Middle ear effusion: tympanometry versus operative findings

Ali A. Mustaffa

Department of Surgery, College of Medicine, University of Mosul,

Received: 12th Dec 2004; Accepted: 1st Jul 2005

ABSTRACT
Objective: To evaluate the role of tympanometry in predicting middle ear effusion by comparing results with the operative findings.

Design: A descriptive study concerned with 106 ears (57 patients) diagnosed as middle ear effusion by tympanometry; type B, flat curve; that underwent myringotomy operation (with or without ventilation tube insertion).

Setting: Department of ENT-Al-Raam Teaching Hospital/Mosul for the period (April 2003 to September 2004).

Tympanometry was performed in the Outpatient Clinic of Al-Jahromi Teaching Hospital.

Subjects: The study included 38 males and 21 females with a ratio of 1.8:1. The average age was 6 years with a range of 3-12 years.

Methods: The parameters analyzed included age, sex and tympanometric results. Matching between the suspected ears for middle ear effusion, type B, flat curve, and the operative findings (fluid found in the middle ear at the time of myringotomy) was recorded.

Results: The diagnostic accuracy and examination success rate of tympanometry; type B, flat curve, in predicting middle ear effusion was 71.4%. Moreover, the sensitivity, specificity, positive and negative predictive values were 97.2%, 57.3%, 55.3% and 97.5% respectively. Thus, the positive likelihood ratio was 2.3.

Conclusions: The accuracy rate of tympanometry in predicting middle ear effusion showed a fair validity for its exclusion. The use of pneumatic otoscopy and tympanometry together improves the accuracy of diagnosis.

Key words: Tympanometry, middle ear effusion, myringotomy.
PATIENTS AND METHODS
This study presents a descriptive analysis of 105 ears (57 patients) diagnosed by tympanometry as middle ear effusion that underwent myringotomy operation (with or without ventilation tube insertion).

These procedures were performed in the Department of ENT- Al-Salam Teaching Hospital/Mosul for the period from April 2003 to September 2004.

The patients were collected from the Outpatient Clinic of Al-Salam Teaching Hospital and the private clinics during the period of the study.

Otoscopy with effusion is suspected because of hearing loss, unexpected educational delay and behavioral problems. Its otoscopic diagnosis includes loss of light reflex, possibly with a fluid level or bubbles visible through the drum.

All clinically suspected patients underwent tympanometry in the Outpatient Clinic of Al-Jamhori Teaching Hospital. The findings of tympanometry were classified into three curves namely: normal (type A), middle ear effusion (type B, flat) or negative pressure (type C).

Myringotomy was performed at Al-Salam Teaching Hospital under general anesthesia through an anteriorinferior radial incision. A comparison between the tympanometric diagnosis of middle ear effusion; type B, flat curve; and the operative findings (fluid found in the middle ear at the time of myringotomy) was recorded.

The following data were further recorded:
1. Age and sex of the patient.
2. Accuracy rate, sensitivity, specificity, positive and negative predictive values of tympanometry in predicting middle ear effusion.

Statistical analysis was performed using the Z-proportion test.

RESULTS
The mean age of the patients was 6 years with a range of 3-12 years. The commonest age group was in the 5th-8th years of life (Fig. 1).

The study included 36 male patients (63.2%) and 21 females (36.8%) with a ratio of 1.7:1. This difference was statistically significant (Z=2.81, P<0.01).

Talley (1) shows that the most frequent curve recorded was type B, flat curve.
(61.9%). Moreover, tympanic membrane congestion was bilateral in 51 patients (86.4%) and unilateral in 6 patients (10.6%). This difference is statistically significant (Z = 8.45, P < 0.001).

The overall diagnostic accuracy and examination success rate of type B, flat curve in predicting middle ear effusion was 71.4%. The sensitivity, specificity, positive and negative predictive values were 97.2%, 67.3%, 55.3% and 97.6% respectively (2).

The positive likelihood ratio was 2.3 (Table 2).

Figure (1): Age distribution of the patients.

<table>
<thead>
<tr>
<th>Type of curve</th>
<th>Age (%)</th>
<th>Operative finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>72(27.9%)</td>
<td>84(98.7%)</td>
</tr>
<tr>
<td>Type B</td>
<td>65(31.6%)</td>
<td>36(55.3%)</td>
</tr>
<tr>
<td>Type C</td>
<td>10(15.2%)</td>
<td>10(15.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>147(100%)</td>
<td>130(89.9%)</td>
</tr>
</tbody>
</table>

Table (2): Validity tests.

<table>
<thead>
<tr>
<th>Type of curve</th>
<th>Operative finding</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[+]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type B</td>
<td>C = 35</td>
<td>60</td>
</tr>
<tr>
<td>Type A or C</td>
<td>D = 29</td>
<td>49</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>37/37</td>
</tr>
</tbody>
</table>

Accuracy rate = \(\frac{a + d}{a + b + c + d} \times 100 = 71.4\% \)

Positive likelihood ratio = \(\frac{a}{a + c} \) = \(\frac{36}{37} \) = 2.3

© 2005 Mosul College of Medicine
DISCUSSION

Otis media in children continues to be a major challenge for health care providers. Distinguishing a case of otitis media from otitis media with effusion is clinically important because antibiotics are seldom given for the latter condition. All children with chronic middle ear effusion should have audiological evaluation. "Tympanometry and acoustic reflectometry can be useful adjunctive tools to confirm the presence of fluid in the middle ear." [10]

The average age of the patients studied was 6 years with a range of 3-12 years. The study included 63.2% males and 36.8% were females. Similarly, Sankovic and Dieniger (1999) reported that the age of their patients ranged from 9 months to 12 years. In other words, middle ear effusion is common among the most intensive period of language development, which is a concern given the risk of hearing loss associated with it.

The study revealed that the diagnostic accuracy and examination success rate of tympanometry; type B, flat curve; in predicting middle ear effusion was 71.4%. The sensitivity and specificity were 97.2% and 57.3% respectively. These results indicate that the test is showing a high sensitivity and low specificity rates. A sensitivity test is more useful in detecting the disease in screening processes and minimizing false negative diagnoses. Similarly, Bajoni (1991) stated that tympanometry detects the presence or absence of middle ear effusion in 73% of ears with a sensitivity and specificity of 80% and 54% respectively. While, Lous (2000) reported that a flat tympanogram (type B) predicts a middle ear effusion in 90% of cases, thus, it is recommended as a diagnostic modality for general practitioners.

It can be concluded that tympanometry is well established as a means of assessing the presence of fluid in the middle ear. The type B tympanogram is usually considered a unique entity [11].

The Canadian Medical Association Journal (2001) stated that the sensitivity and specificity of tympanometry were over 80% in predicting fluid found in the middle ear at a surgery, whereas the sensitivity and specificity of pneumatic otoscopy were 89% and 80% respectively. In comparison, Olusanya (2001) reported that the sensitivity and specificity of tympanometry were 92% and 84% respectively. The positive and negative predictive values in our study were 95.3% and 97.5% respectively. Similarly, Butler and Macmillan (2001) reported that the positive predictive value of an abnormal (type B), tympanogram is between 43% and 66% that is, half of ears with abnormal tympanograms may have otitis media with effusion. The negative predictive value of this test is more informative because of high sensitivity rate so the majority of ears with normal tympanograms (type A curve) will, in fact, be normal [12], Palhnu (2001) reported that negative pressure tympanogram (type C) is a poor indicator for the presence of middle ear fluid, if otitis media is diagnosed with negative tympanometric peak pressure, negative middle ear bacterial culture for the main pathogens is highly probable. The positive likelihood ratio in our study was 2.3. Values of the likelihood ratio greater than one correspond to situations in which persons affected with the disease of interest are more likely to have a positive test result than unaffected persons [13].

Al-Hayali and A.Mutlaab (2003) reported that the accuracy rate, sensitivity and specificity of clinical diagnosis in predicting middle ear effusion were 60.4%, 96% and 18% respectively. Because the strength of tympanometry (it provides a quantitative measure of tympanic membrane mobility) and pneumatic otoscopy (many abnormalities of the ear drum and ear canal that can skew the results of tympanometry are visualized); using both pneumatic otoscopy and tympanometry together improve the accuracy of diagnosis.

The possible explanation to the variable results of tympanometry regarding its sensitivity and specificity may be attributed to the following factors:

1. Waiting period till myringotomy done.
2. Recumency may lead to fluid displacement to the epi tympanic and mastoid or through Eustachian tube.
3. Anaesthetic gases; when inhalant anaesthesia with assisted ventilation is used, there is a significant increase of middle ear pressure due to use of nitrous oxide; this pressure increment can evacuate the fluid from the middle ear via the Eustachian tube [14].
4. Technical causes; these are either related to examiner fault or anatomical causes which may give type B curve and these included:
 - Hard packed cerumen.
 - Perforation of the tympanic membrane.
 - Patent ventilation tube.
 - Non air tight seal probe.
 - Probe facing the carina wall.
5. Recurrent episodes of middle ear effusion appear to alter the acoustic immittance characteristics of the middle ear even when