Montelukast: A Review of Articles on the Experimental Level

Sara Yassin Mohammed*, Luma Ibrahim Khalel Al-Allaf*
*Department of Anatomy, College of Medicine, University of Mosul, Mosul, Iraq
Correspondence: sarayassin@uokirkuk.edu.iq

ABSTRACT
Montelukast is an orally dosed drug (available as a film-coated tablet, chewable tablet, or oral granules) and an antagonist of the cysteinyl leukotriene receptor is frequently used to treat asthma symptoms in both adults and children. This study aims to conduct a review of articles on the use of Montelukast on the experimental level. Due to the significant adverse effects of montelukast and the high prevalence of asthma in children, there is a warning by FDA regarding the use of this drug to stop this agent immediately if side effects occur. However, an intense and, at times, life-threatening withdrawal upon discontinuation of montelukast was reported including severe neuropsychiatric side effects including anxiety, depression, insomnia, suicidal thoughts and actions. Several studies with contradictory views were performed on the effect of Montelukast use on the animals. Montelukast has anti-inflammatory, antioxidant actions on several tissues.

Further research on how montelukast works and its effects on which organ, particularly on children, is incredibly important, given the enormous popularity and global distribution of this drug. The present study analyzed the previous published case reports regarding montelukast induced adverse drug reactions. They included agitation, anxiety, depression, sleep disturbance, hallucinations, suicidal thinking and actions, tremor, dizziness, drowsiness, neuropathies and seizures. The immune system can be involved, in particular, cases of Churg Strauss syndrome have been published. Furthermore, it can induce hypersensitivity reactions, including anaphylaxis and eosinophilic infiltration. In addition, hepatobiliary, pancreatic and uropoietic disorders have been observed. Some of these cases are characterized by severe prognosis (i.e. neurological deficit and fatal hepatotoxicity).

Keywords: Montelukast, review, rat.
INTRODUCTION

Montelukast sodium as a leukotriene receptor antagonist, is used to treat chronic asthma episodes, maintain asthma control, and alleviate the symptoms of seasonal allergies. That is used for the maintenance treatment of asthma, chronic asthma attacks and to relieve symptoms of the seasonal allergies.

The food and drug administration (FDA) has granted approval for the oral medication montelukast for the treatment of chronic asthma as well as prophylaxis for the prevention of exercise-induced bronchoconstriction. It is available as a film-coated tablet, chewable tablet, or oral granules. Figure 1.

Indication of Montelukast:

Singulair, a trade name for Montelukast manufactured by Merck, received the first US FDA approval for clinical usage in 1998. The drug belongs to the class of medications known as leukotriene receptor antagonists (LTRA). Although they have proven to be successful, certain LTRAs, like montelukast, are often used in step treatment for asthma in addition to or as a complement to inhaled corticosteroids or other medications was recommended.

Montelukast is recommended for the prevention and long-term management of asthma in adults and children 12 months of age and older, the treatment of individuals aged 6 years and over for the prevention of exercise-induced bronchoconstriction, the reduction of seasonal allergic rhinitis symptoms in patients older than two years and perpetual allergic rhinitis symptoms in individuals older than six months. Certain formulations such as montelukast tablets are approved by special regulatory agencies as the prevention and long-term asthma treatment and for the prevention of bronchoconstriction brought on by exercise in different ages.

Moreover, when used for these purposes, montelukast is thought to be beneficial either alone or in combination with other drugs that are authorized for the maintenance treatment of chronic asthma. For example, using montelukast and inhaled corticosteroids simultaneously can show synergistic effects to control asthma or allow for a reduction in the required dose of inhaled corticosteroids while still maintaining clinical stability.

Montelukast an inhaled corticosteroid, or an inhaled corticosteroid mixed with a long-acting beta-agonist in individuals who still experience asthma symptoms.

Mechanism of action:

The leukotriene receptor antagonist montelukast (empirical formula C35H35ClNNaO3S) interacts with a high affinity to the cysteinyl leukotriene receptor for leukotrienes D4 and E4, that are included in the inflammatory process that may result in the signs and symptoms of asthma and allergic rhinitis. Mast cells are one type of cell that excrete substances that are thought to cause these conditions. Airway cells such as macrophages and smooth muscle cells contain leukotriene receptors. Without displaying any agonist activity, montelukast reduces the physiological consequences of leukotrienes (such as airway edema, smooth muscle contraction, and disruption of normal cellular activity) when attached to leukotriene receptors.

Leukotriene D4-induced bronchoconstriction is significantly inhibited by low dosages of montelukast (5 mg) in asthmatics. Also, in a crossover study including 12 asthmatic patients, montelukast caused suppression of both early and late phase bronchoconstriction brought on by a challenge with an antigen.

Montelukast-treated asthmatics in controlled studies showed a 9%–15% reduction in the number of eosinophils in their peripheral blood compared to placebo-treated patients. Patients with seasonal allergic rhinitis who took montelukast experienced a 0.2% rise in eosinophil counts in peripheral blood as opposed to a 12.5% increase in those who took a placebo.

Figure 1: Molecular structure of montelukast sodium (3), figure 1b: Picture of montelukast tablet https://wikikenko.com/product/zespira-film-coated-tablet/.)
Montelukast: A Review of Articles on ...

Sara Yassin Mohammed

Side Effects:

Childhood asthma is a prevalent illness, and in the past 20 years, its frequency has climbed from 8 to 23%.

Due to the significant adverse effects of montelukast and the high prevalence of asthma in children, there is a warning by FDA regarding the use of this drug to stop this agent immediately if side effects occur.

However, an intense and, at times, life-threatening withdrawal upon discontinuation of montelukast was reported including severe neuropsychiatric side effects including anxiety, depression, insomnia, suicidal thoughts and actions.

Long-term mental health injuries and neurological complications were recorded including cognitive, sensory, or motor deficits that may also manifest as emotional instability, significant behavioral dysregulation, and seizures in the most severe cases.

Main side effect of montelukast on the patients (tooth pain, exhaustion, fever, stuffy nose, sore throat, coughing, hoarseness, skin rash, mood swings, tremors, headache, stomach pain, heartburn, upset stomach, nausea, vomiting, and diarrhea.

Many researches on the neuropsychiatric consequences of leukotrienes were published throughout this decade, but the connection was indirect and the subject of debate.

However, there were FDA-led investigations concerning the risk that montelukast could cause neuropsychiatric side effects such agitation, hallucinations, and suicidal thoughts in 2008–2009, those who utilized the medication's behavior and other characteristics, even and while the official montelukast prescribing material now mentions these kinds of side effects.

Drug Interactions:

Therapeutic doses of montelukast also have no clinically-significant effect on the pharmacokinetics of prednisone, prednisolone, terfenadine, digoxin, warfarin, and oral contraceptives (ethynyl oestradiol/norethindrone 35/1). Co-administration of phenobarbital decreases by almost 40% the plasma concentration curve (AUC) for montelukast.

While taking montelukast sodium along with inducers of 3A4 such phenytoin, phenobarbitone, and rifampicin, care should be taken because montelukast is processed by cytochrome P450 3A4.

Metabolism and Excretion of Montelukast:

Montelukast is extensively oxidatively metabolized in the liver by the cytochrome P450 enzyme system, with the mono-oxidase CYP2C8 (72%), CYP3A4 (16%), and CYP2C9 (12%). Each contributing significantly. It is then eliminated in the bile.

It doesn't stay in the bloodstream for very long. Its plasmic concentration peaks 2 to 4 hours after ingestion, and it is quickly eliminated. 2.7 to 5.5 hours is the average plasma half-life.

The recovery of radioactivity in bile was incomplete and ranged from 3 to 20% of the dose due to the collection method and the short sampling period. Radio-chromatographic and LC-MS/MS analysis of the bile revealed the presence of one main, numerous minor metabolites, as well as trace levels of the parent medication that had not changed.

Studies on the Effect of Montelukast on Various Animals' Organs:

Several studies with contradictory views were performed on the effect of Montelukast use on the experimental level as follows:

The Effect on the Respiratory System:

Montelukast demonstrated anti-inflammatory activities in numerous animal respiratory illness models. For instance, montelukast inhibited airway hyperresponsiveness and inflammation in an animal model of respiratory syncytial virus (RSV) produced bronchiolitis and suppresses vascular permeability of airway mucosa.
In two investigations on lung damage brought on by hemorrhagic shock, montelukast decreased IL-6 and TNF- levels.37,38 reduced serum levels of antibodies related to lung myositis, as well as the amount of total protein and bronchoalveolar lavage fluid, and lessened lung injury.35 Montelukast also reduced lung inflammation brought on by lipopolysaccharide in a model of acute respiratory distress syndrome.40

In vitro nasal airway epithelial cells were exposed to montelukast, which inhibited the release of pro-inflammatory mediators such IL-8 and RANTES.41

Airway inflammation in asthmatics is linked to intravascular platelet activation, with platelets helping to activate and infiltrate T cells and eosinophils into the bronchial wall.42,43 Intriguingly, animal studies show that combining the antiplatelet medicine clopidogrel with the asthma therapy montelukast appears to reduce airway inflammation44 Thrombosis and platelet aggregation are two significant outcomes brought on by SARS-CoV-2 infection.45,46

It's interesting to note that CysLTs appear to have an impact on platelet function in the setting of allergen-induced airway inflammation47. Platelets express CysLT1R and CysLT2R48, and mouse platelets have demonstrated that LTC4 activates platelets.49 These findings imply that CysLTs may be involved in platelet activation, and that the use of CysLT1R antagonists, such montelukast, may be helpful in the management of inflammatory conditions, especially when combined with clopidogrel.50,51

The Effect on the Nervous System:

In AD animal models, montelukast reverses the effects of -amyloid-induced neurotoxicity and CysLT1R expression, which results in a decrease in pro-inflammatory factors and proteins linked to apoptosis.52,53 Montelukast has also been investigated in relation to aging, where its good impact on microglial activation was once more observed. More intriguingly, however, was an increase in hippocampus neurogenesis, which shows that the medication may be able to restore neural circuitries.54

In a mouse model of Lewy-body dementia based on -synuclein, montelukast therapy was demonstrated to lower -synuclein burden and restore memory.55

Based on the theory that montelukast can cure cognitive impairment, a case study from 2017 demonstrated encouraging subjective improvements in memory and other dementia-related symptoms.56

On the other hand, Eriksson et al. (2018) found negative effects on the developing brain of a mouse both acute and 2-week administrations of montelukast inhibited cellular proliferation and maturation in the hippocampus of the intact juvenile mouse brain. However, these mice were sacrificed before sexual and brain maturation. We do not know what a brain treated with montelukast looks like when it reaches adulthood.17 Further research on how montelukast works and its effects on the brain, particularly on children's brains, is incredibly important, given the enormous popularity and global distribution of this drug.18

In the context of traumatic brain injury (TBI), when inflammation and disruption of the blood-brain barrier occur after a traumatic event, an increase in CysLTs and CysLT receptors has been investigated.57

In order to lessen the long-term neurological damage brought on by neuro-inflammation following a TBI, the use of montelukast has been suggested.

Conclusion: In animal models, where effects on symptoms and disease biomarkers have been observed, montelukast has demonstrated promising effects on neuroinflammation in a number of neurodegenerative disorders.

The Effect on the Liver:

Montelukast may have an impact on liver damage in experimental obstructive jaundice through its additional anti-inflammatory and antioxidant actions.

Many different cell types, including epithelial cells, fibroblasts, myoblasts, smooth muscle cells, basophils, eosinophils, neutrophils, macrophages, and lymphocytes, create leukotrienes (LTs), bioactive proinflammatory chemicals, through the 5-lipoxygenase pathway from arachidonic acid.58

In the synthesis and metabolism of LTs, the liver is crucial. Studies on humans have revealed that CysLTs play a role in the etiology of a number of disorders, including liver cirrhosis, hepatitis B, bile duct blockage, and hepatitis. Moreover, experimental findings show that liver injuries caused by alcoholism, CC14 exposure, LPS exposure, hepatic ischemia/reperfusion injury, liver cirrhosis, and liver allograft rejection result in increased CysLTs production.59

CysLTs have recently been identified as potential cholestasis mediators. They may generate hepatic edema by increasing vascular permeability in the microcirculation, which in turn causes cholestasis because of an increased resistance to bile flow.

The CysLTs in guinea pigs cause plasma extravasation near the bile ducts. Leukotriene D4 (LTD4) and prostaglandin E2's synergistic activity has a comparable effect in rats (PGE2). Leukotriene C4 (LTC4) promotes bile salt excretion at low dosages but has a cholestatic impact at high levels in the isolated rat liver.60
Montelukast: A Review of Articles on ..

The detrimental effects of obstructive jaundice on liver histology were lessened by montelukast.

Although the exact mechanism of the bile salt-induced damage has not been determined, endotoxemia, changes in the mitochondrial permeability transition, inflammatory cell infiltration, accumulation of hydrophobic bile acids, and the harmful effects of oxygen free radicals are potential factors that may be to blame. 61,62

According to studies, the liver and plasma MDA levels are affected by montelukast, which is thought to lessen tissue damage and lipid peroxidation. Montelukast decreased tissue MPO activity, which could be interpreted as resulting in less neutrophil infiltration and tissue damage.

It is clear that montelukast has antioxidant qualities, which may contribute to some of the positive effects it has on liver damage Sener et al. 63 demonstrated that montelukast protects against oxidative damage following heat injury using a neutrophil-dependent mechanism Steib et al 64 claimed that a 10-day course of treatment with montelukast significantly decreased basal portal pressure and attenuated the Kupffer cell-dependent rise in portal pressure. These findings led them to conclude that montelukast may have therapeutic value for people who have portal hypertension and hepatic fibrosis in cholestatic rats. 65

By its various separate modes of action, montelukast can be utilized to treat various organ problems. In the experimental obstructive jaundice model, montelukast had a considerable hepatoprotective effect, which can be attributed to its anti-inflammatoty and antioxidant properties. To determine the precise mechanism of montelukast's hepatoprotective action, however, more research is required.Gideroglu et al 66 Montelukast sodium's impact on neutrophil infiltration and flap survival was examined. In the montelukast-treated rat group, flap survival was improved, and this finding was connected to reduced neutrophil infiltration and a balance in the oxidant-antioxidant activity status.

The Effect on the Kidneys:

Tugtepe et al. 67 The results showed that montelukast inhibited neutrophil infiltration, balanced the oxidant-antioxidant status, and controlled the production of inflammatory mediators in the kidney tissue of pyelonephritic rats. Coskun et al. 68 In a rat model of cecal ligation and puncture-induced sepsis, the effects of montelukast on antioxidant enzymes and proinflammatory cytokines on the heart, liver, lungs, and kidneys were examined. The dose-dependent attenuation or reduction of MPO in lung, liver, heart, and kidney tissues as well as the reduction of lipid peroxide (LPO) in all of these tissues with the exception of kidney tissue were notable effects of montelukast. Montelukast was most effective in protecting the lung tissue when sepsis was present.

Montelukast provides preventive benefits against various organ harm brought on by chronic renal failure 69. They explained this by the fact that montelukast can prevent neutrophil infiltration and apoptosis. Additionally, they proposed that montelukast controls the production of proinflammatory mediators and balances the oxidant-antioxidant status. In a different investigation, it was discovered that montelukast reduced microscopic damage and enhanced kidney functioning by reversing ischemia reperfusion-induced oxidative reactions 70.

Studies have shown that lipid peroxidation, an autocatalytic mechanism that results in the oxidative degradation of cellular membranes, is connected to IR in the kidney 71. The amount of the intracellular antioxidant glutathione, which would otherwise be damaged when neutralizing free radicals, remained unaffected as montelukast lessened the oxidative damage on cellular structures. The antioxidant pool is thus further strengthened by the action of montelukast, suggesting that the anti-oxidative impact of montelukast on lipid peroxidation does not require the consumption of tissue GSH stores. Additionally, montelukast therapy also corrected the IR-induced decrease in total antioxidant capacity 72.

Montelukast has a protective effect against both the reperfusion damage that results from the treatment of blockage that results in increased renal blood flow and the renal damage caused by unilateral ureteral obstruction.

Montelukast, which functions as a CysLT1 receptor antagonist, has been found to have neuroprotective and antiapoptotic effects in an IRI mouse model. These benefits are linked to the reduction of neutrophil accumulation, lipid peroxidation, and the release of pro-inflammatory cytokines 73 have demonstrated that montelukast can lessen tissue damage, neutrophil infiltration, and inflammation in the spinal cord.

The Effect on the Intestine:

In a histological analysis of Erdem et al, Montelukast (2 mg/kg) acts against the Rats' intestinal mucosal ischemia and reperfusion injury caused intestinal mucosal damage and apoptosis. Also, direct cytoprotective effects in the intestine with the suppression of caspase pathways, harm to the liver and kidneys, as well as systemic anti-inflammatory mechanisms with the control of IL-6 and TNF- production 74.
CONCLUSION
According to the results of this study, montelukast showed a significant effect on the body organs, which might be due to its antioxidant and anti-inflammatory activities.

Acknowledgments
We would like to thank the reviewers for their valuable advice on the scientific evaluation of the research and the study participants for their participation.

Conflict of Interest Statement
None

REFERENCES
17. Eriksson Y, Bostrom M, Sandelius Å, Blennow K, Zetterberg H, Kuhn G, Kalm M. The anti-asthmatic drug, montelukast, modifies the neurogenic potential in the young healthy and

22. Al Frayh AR, Al Nahdi M, Bener AR, Jawadi TQ. Epidemiology of asthma and allergic rhinitis in two coastal regions of Saudi Arabia. Allergie et immunologie. 1989 Dec 1;21(10):389-93. al Frayh AR.0000-0003-2474-5122, King Saudi University College of Medicine

31. Filippua AM, Laflita J, Neuvonen PJ, Backman JT. Reevaluation of the microsomal metabolism of montelukast: major contribution by CYP2C8 at clinically relevant concentrations. Drug Metabolism and Disposition. 2011 May 1;39(5):904-11. DOI: https://doi.org/10.1124/dmd.110.037689

35. Josiane de Oliveira Cardoso, Regina Vincenzi Oliveira, Jessica Bo Li Lu and Zeruesenay Desta Drug Metabolism and Disposition December 2015, 43 (12) 1905-1916; DOI: https://doi.org/10.1124/dmd.115.065763

65. Herken H, Uz E, Özyurt H, Sağır S, Virit O, Akyol Ö. Evidence that the activities of erythrocyte free radical scavenging enzymes and the products of lipid peroxidation are increased in different forms of schizophrenia. Molecular psychiatry. 2001 Jan;6(1):66-73. https://doi.org/10.1038/sj.mp.4000789

